Superconvergence of kernel-based interpolation
نویسندگان
چکیده
منابع مشابه
Stability of kernel-based interpolation
It is often observed that interpolation based on translates of radial basis functions or non-radial kernels is numerically unstable due to exceedingly large condition of the kernel matrix. But if stability is assessed in function space without considering special bases, this paper proves that kernel–based interpolation is stable. Provided that the data are not too wildly scattered, the L2 or L∞...
متن کاملMultilevel Sparse Kernel-Based Interpolation
A multilevel kernel-based interpolation method, suitable for moderately high-dimensional function interpolation problems, is proposed. The method, termed multilevel sparse kernelbased interpolation (MLSKI, for short), uses both level-wise and direction-wise multilevel decomposition of structured (or mildly unstructured) interpolation data sites in conjunction with the application of kernel-base...
متن کاملSuperconvergence of Jacobi-Gauss-Type Spectral Interpolation
In this paper, we extend the study of superconvergence properties of ChebyshevGauss-type spectral interpolation in [24, SINUM,Vol. 50, 2012] to general Jacobi-Gauss-type interpolation. We follow the same principle as in [24] to identify superconvergence points from interpolating analytic functions, but rigorous error analysis turns out much more involved even for the Legendre case. We address t...
متن کاملLagrange Interpolation and Finite Element Superconvergence
Abstract. We consider the finite element approximation of the Laplacian operator with the homogeneous Dirichlet boundary condition, and study the corresponding Lagrange interpolation in the context of finite element superconvergence. For ddimensional Qk-type elements with d ≥ 1 and k ≥ 1, we prove that the interpolation points must be the Lobatto points if the Lagrange interpolation and the fin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 2018
ISSN: 0021-9045
DOI: 10.1016/j.jat.2018.05.002